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Complex Zeros of an Incomplete Riemann Zeta Function 
and of the Incomplete Gamma Function 

By K. S. Kiolbig 

Abstract. Complex zeros of an incomplete Riemann zeta function and of the incomplete 
gamma function are calculated as functions of the upper limit X of the definition integrals. 
It becomes apparent that not all, but only some, of the zero trajectories of the incomplete 
Riemann zeta function join a zero of the Riemann zeta function 1(s) for X -+ C. The 
remaining trajectories at least in the region considered, approach the zero trajectories of the 
incomplete gamma function. 

1. Introduction. Let s = a + it be a complex variable. The gamma function 
can then be defined for Re s or > 0 by the infinite integral 

rx 
r(s) = f x8lex dx. 

By replacing the upper limit of the integral by a parameter X > 0, one obtains the 
so-called incomplete gamma function [1] 

(2) Ny(s, X) P(s, x)r(s) f x 1e$ dx 

or 

(3) P(s, X) = j5 x 'e- dx. 

This function plays an important role in several fields. 
It seems to be much less well known that a similar procedure can be applied to 

the Riemann zeta function 

(4) t(s)= E 8 

n=, n 

This function can be defined for a > 1 by the infinite integral 
Co r 8-1 

(5) D(s) = P(s) Jo g dx. 

Replacing the upper limit by X > 0 gives 

I x x 8-1 

(6) s c h n th e - R n a 

We shall call this function the incomplete Riemann zeta function. 
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Properties of A(s, X) have been investigated by Putschbach [2] in a manuscript, 
which, as far as the author knows, remains unpublished. 

It is known that the imaginary parts tm of the first nontrivial zeros of the Riemann 
zeta function i(s) on the line o = I are given by t, = 14.13473, t2 = 21.02204, 
t3 = 25.01086, -.. [3]. Since 

lim A(s, X) = t(s), 
X-4*C0 

it would be interesting to know how the zeros of A(s, X), if there are any, approach 
the zeros of i(s), if in fact they do. 

It is the aim of this paper to show, by numerical calculation, the behaviour of 
some of the solutions 3(X) of A(N(X), X) = 0 in the s-plane. In particular, it will be 
seen that not all of these functions 3(X) approach a nontrivial zero of i(s), but only 
some of them. The remaining curves, at least in the region considered, approach 
the zero trajectories 9(X) of the incomplete gamma function P(s, X) as X -> C. 

2. Other Formulae for A(s, X) and P(s, X). The definitions (3) and (6) are valid 
only for o- > 0 and o- > 1, respectively. Using the series expansion for the exponential 
function in Eq. (3), one finds for a > 0 

1 (- 1)n X.8+n 

P(s,7) =pI(s) = n! s + n 

X28 
Co (- On I 

r(S) nE n! s + n 
By analytic continuation, this formula now defines P(s, X) for IsI < o and 0 < X < co, 
with removable singularities at s = k (k = 0, -1, -2, *..), where P(k, X) = 1. 
For the incomplete zeta function (6), this procedure becomes more complicated. 
Taking the series 

(8) 1 E n Xn e -1 n-o n! 

where the Bn are the Bernoulli numbers, we see that this series converges for lxI < 2wr 
only. We therefore split the integration interval into two subintervals: 0 to X' and 
X' to X, where 0 < X' < 27r. We substitute the series (8) into the first of these two 
integrals and obtain 

I rco Bn Xl+n-1 X 
d8-i> (9) A s )- E_+ dx 

1 
(g) A(s, X) = ~r(s) ni-0 n! s + n- e- 

For X' = 1, this formula gives 

(10) A(s X) - I + dx 
r() -0n! s+ n- fe~1x 

and, for X -> , 

Thslastformua for(s)r cneO n! st l ni e of I f 
This last formula for t(s) corresponds to the decomposition of Prym for r5(s) [4]. 
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We see here that Eqs. (9), (10) and (1 1) are valid also in the half plane o- < 1, except 
at the integer points s = 1, 0, -1, -2, 

For integers s 1 - k (k > 1) one finds from Eq. (10) using the limit 

(12) lim (s + k - 1)r(s) = (- I 

and the fact that the integrals in Eqs. (10) and (11) are bounded, the result 

(13) A(-k, X) = ?(-k) = k + 1 

for all X and k = 0, 1, 2, *.. In particular, we have 

A(O, X)= 2 

(14) A(-2k, X) 0 (k ? 1), 

A(-2k + 1, X)= -2k (k _ 1), 

and, in addition, A(1, X) = D(1) = a). 
With the help of the expansion 

(15) 1 - (X > O) 

we obtain from Eq. (6) 

(16) A(s, X) = r(s Xn 
dx (o > 1). 

Making the substitution x' = nx and using Eq. (3) we have 

(17) A(s, X) = -8 nP(s, nX). 
n=1 

This relation was also found by Putschbach [2]. 
For the asymptotic behaviour of P(s, X) we find in [4] for Re s -) 

(18) P(s, X) = e'Xfsi'12e2 + O(l/s)} 

so that 

(19) A(s, X) (21)1/2 e8X8s8l/2 E e- 1 + O(l/s)}. 

For large, but fixed, X it follows for Re s -- oo that 

(20) A(s, X) t P(s, X) 
I e 2 -x) e --1/2 

3. Nontrivial Zeros of A(s, X). Putschbach [2] observed that for real negative s 
the function A(s, X) oscillates about the function i(s), and both functions have the 
points defined by Eq. (13) in common. Furthermore, he found that A(s, X) has two 
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zeros in the interval - 1 < s < 0, provided X < 0.6. As X increases, these two zeros 
eventually coincide in a double zero s*, for X = X*. For X > X*, a pair of complex 
conjugate zeros moves into the s-plane. The abscissa s* marks the beginning of a 
trajectory 31(X) in the half plane t > 0, defined by A(S,(X), X) = 0. Putschbach found 
also that a second trajectory 52(X) starts in the interval - 5 < s < - 4. By a numerical 
investigation, one finds that the starting points on the negative real axis for the first 
six trajectories Sm are given in Table 1. 

TABLE 1 

m X* 3* = 3 m(X* m =~~~ m M 

1 0.65687 -0.68126 
2 2.53514 -4.29987 
3 3.35107 -8.21375 
4 3.84904 - 12.17003 
5 4.19172 - 16.14216 
6 4.44408 -20.12259 

The behaviour of A(s, X) near s* and s* is shown in Figs. MI and M2. Figure MI 
is taken from Putschbach [2]. It seems that s* = 4 - 4m - e(m), where e(m) = 0(1) 
for m -* c; no attempt was made to prove this relation. 

The first trajectory 9,(X) has been approximately calculated by Putschbach [2] up 
to X = 5. He indicated that each of the curves 9m(X) would probably approach a 
nontrivial zero of i(s) for X -* c. The author [5] extended the calculation of &,(X) 
up to X = 9. The behaviour of this trajectory in the interval 5 ? X ? 9 showed that 
a direct approach to the first zero of D(s) seemed unlikely. 

A systematic investigation of the first six trajectories 9m(X) up to X = 50 gives the 
result shown in Fig. 1. The first, second, third and fifth curves, 9,(X), 52(X), 53(X) and 
s(X), do not approach a zero of D(s), but continue into the half plane o* > 1. The 
fourth and the sixth curve &4(X) and s(X), however, reach for increasing X the zeros 

= + 14.13473i and s2 = 2 + 21.02204i of a(s), respectively. Therefore, there 
is no direct correspondence between the zeros 9m(X) of A(s, X) for X o and the 
zeros Sm of D(s) on the line o- = - 

It is interesting to observe from Fig. 1 that the picture of the 9m(X) curves which 
shows a uniform behaviour in the half plane o < -2, becomes considerably distorted 
in the region around o = 4. In the half plane o- > 5, the curves are again smooth. 

The curves 54(X) and 96(X) approach the corresponding zeros s1 and s2 of D(s) i 
different ways, as can be seen from Fig. 1 and, in detail, from Figs. M3 and M4. 

4. Zeros of P(s, X). An examination of the graph of the function 

(21) 1Y*(s, X) = X8P(s, A) 
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which was originally published by Tricomi [6], and which was reproduced in [1], 
shows that y*(s, X)-and hence P(s, X)-has double zeros in the intervals -2 < s < 
-1 and -4 < s < -3, in both cases for 0 < X < 1. Furthermore, one can see from 
the results obtained by Tricomi [6], [7] that P(s, X) has a positive zero Xo(s) for each 
value of s satisfying 

-2m <s< 1 -2m (m =1,2,3,...). 

This function X0(s) has a maximum value X* at a certain value s = * ; this means 
P(s, X) has a double zero at ?* for X = X*. As in the case of the incomplete zeta 
function, these double zeros are starting points for trajectories sm(X) with P(?m(X), X)= 0 
in the s-plane. A numerical investigation then gives the starting points for the first 
five trajectories gmn() as shown in Table 2. 

TABLE 2 

m Sn m(X) 

1 0.30809 -1.64425 
2 0.77997 -3.63887 
3 1.28634 -5.63573 
4 1.80754 -7.63372 
5 2.33692 -9.63230 

Tricomi [6], [7] has shown that the following asymptotic expression for the posi- 
tive zero Xe(s) holds for s - co in the above intervals 

____ FI + T(-'rs/2)1' (22) Xo(s5) -rs- log 1. 
1+r sin7rs 

r = 0.27846 is the real root of the equation 

1 + x + log x = 0. 

A first approximation to the maximum abscissa s* can be found by differentiation 
of Eq. (22). This gives the following equation for s = 

(23) Tr/2 - + 7rcot7rs=1 + r. 
(-27rs)"2 - r7rS 

For large I s I one can neglect the first term and obtain for the remaining equation 
the solution 

1 - 2m --- arctan + 

(24) 2 X 

1 - 2m -0.62302. 

A comparison with Table 2 shows that for m = 5 the error is less than 0.1%. Intro- 
ducing Eq. (24) into Eq. (22) gives for m -o 

(25) A * -' 2rm 1 I T log m + 0.03213. 
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The trajectories $m(X) have been calculated for the given values of m up to A = 50. 
They are shown in Fig. 1. These curves behave much more uniformly than those of 
the incomplete zeta function. In addition, they join, at least in the region investigated, 
those zero trajectories 3m(X) of A(s, A) which do not end in a zero of D(s). This means 
there is a correspondence between 9,(X) and 9,(X), s2(X) and 92(N), s3(X) and S3(X), and 
between 9,(X) and ,4(X). 

5. The Numerical Calculation of the Zero Trajectories. The expression (7) for 
P(s, N) and the expression (10) for A(s, A) were used for the evaluation of SmG\) and of 
Sm(X), respectively. Most of the calculations were carried out in double-precision 
arithmetic on a CDC 6600 computer, corresponding to about 28 decimal digits. For 
?4(X) and 9,(X) with X > 25, it became apparent that the series (7) is no longer suitable, 
because of the fact that the value of P(s, N) lies in the round-off region. In this -case, 
the relation 

(26) P(s {X) { + fx ex dx} 

was used. 
The integrals in Eqs. (10) and (26) were calculated with an adaptive double- 

precision Gaussian integration routine [8]. The summation in Eq. (7) was carried out 
until the modulus of the coefficient 

C_ =(1)n vn Cn n! 

became for fixed X less than 1030. The upper limit for n in Eq. (10) was taken to be 
60, which is a safe value. This can be seen from the asymptotic behaviour of the 
Bernoulli numbers and from B60/60! r 0.26 X i0-47. The Bernoulli numbers were 
taken from [1]. The sum in Eq. (26) was calculated as far as n = 40. In fact, the time 
for summing the series in Eqs. (10) or (26) is quite negligible in comparison to the 
time required for the computation of the integrals. 

For the determination of the zeros, a library program written by G6rard [9] for 
solving a system of nonlinear equations by Newton's method was applied to the 
two equations 

Re A(s, X) = 0, Im A(s, X) = 0, 

for finding s and to 

Re P(s, X)= o, Im P(s, X)= O, 

for finding 9m(X). In both cases the unknowns were a and t. Since X' and 1/r(s) have 
no zeros in the region of the complex plane considered, only the moduli of these 
functions were taken into account (as convenient scaling factors). 

In order to find the starting points s* and * , the systems 

A(s, X) O, -A(s, X) =O 
ds 

and 

P(s,X)= , d P(s,X)= O 

were solved for the unknowns s = a- and X, using the same program. 
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TABLE M 1 

Zero trajectories for the incomplete zeta function A(s, X) 

51(X) 32(X) 

X ff t X t 

1 -0.78560 0.48873 
2 -1.02885 1.36806 
3 -0.99776 2.35217 3 -4.46979 1.11093 
4 -0.68749 3.31309 4 -4.59882 2.63643 
5 -0.18279 4.17907 5 -4.35230 4.03199 
6 0.44072 4.93346 6 -3.85580 5.24344 
7 1.12927 5.58612 7 -3.21742 6.26612 
8 1.84958 6.15643 8 -2.51077 7.12240 
9 2.58339 6.66439 9 -1.78191 7.84322 

10 3.32208 7.12696 10 -1.05779 8.45942 
11 4.06267 7.55706 11 -0.35287 8.99846 
12 4.80511 7.96383 12 0.32647 9.48381 
13 5.55062 8.35329 13 0.97926 9.93510 
14 6.30061 8.72911 14 1.60862 10.36853 
15 7.05622 9.09343 15 2.22093 10.79675 
16 7.81810 9.44742 16 2.82516 11.22829 
17 8.58644 9.79182 17 3.43155 11.66670 
18 9.36111 10.12713 18 4.04914 12.11019 
19 10.14181 10.45382 19 4.68307 12.55328 
20 10.92813 10.77237 20 5.33384 12.99015 
21 11.71967 11.08325 21 5.99901 13.41705 
22 12.51604 11.38692 22 6.67543 13.83272 
23 13.31692 11.68382 23 7.36060 14.23743 
24 14.12199 11.97436 24 8.05285 14.63212 
25 14.93099 12.25893 25 8.75119 15.01776 
30 19.02744 13.60343 30 12.31940 16.83590 
35 23.19492 14.84000 35 15.99564 18.50829 
40 27.41892 15.99107 40 19.75974 20.06558 
45 31.68930 17.07221 45 23.59633 21.52848 
50 35.99862 18.09478 50 27.49400 22.91220 

The search for the zeros along the trajectories S,,(X) and Sr(X) was made in the 
following way. From an approximate value s' for a given X the program of Gerard 
calculated the true valuie Sm or gm by iteration to five decimals. The approximation 
s' was found in several ways: using previous calculations [2], [5], using the initial 
values given in Tables 1 and 2, or, in some cases (mainly for m ? 3 and X > 25) by 
an extrapolation from the trajectories already calculated. Once the true solution Sm 
or s,m had been obtained, X was replaced by X + AX and the solution s(X) was used 
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TABLE MI (cont.) 

33(X) 34(X) 

X' fft X T t 

4 -8.42035 1.74239 4 -12.22581 0.7635-1 
5 -8.37020 3.65007 5 -12.35540 3.22021 
6 -7.93471 5.31811 6 -11.97894 5.34229 
7 -7.26889 6.72371 7 -11.28007 7.13550 
8 -6.48265 7.88720 8 -10.40516 8.61869 
9 -5.64675 8.84491 9 -9.44945 9.83465 

10 -4.80426 9.63483 10 -8.47122 10.83040 
11 -3.98037 10.29071 11 -7.50427 11.64860 
12 -3.18957 10.84054 12 -6.56699 12.32494 
13 -2.44042 11.30675 13 -5.66830 12.88786 
14 -1.73880 11.70746 14 -4.81148 13.35939 
15 -1.09012 12.05809 15 -3.99638 13.75598 
16 -0.50059 12.37351 16 -3.22067 14.08917 
17 0.02257 12.67069 17 -2.48032 14.36568 
18 0.47204 12.97140 18 -1.76937 14.58645 
19 0.84086 13.30522 19 -1.07841 14.74293 
20 1.11887 13.72180 20 -0.39060 14.80223 
21 1.31817 14.39451 21 0.29134 14.60119 
22 1.97996 15.22736 22 0.43681 14.23920 
23 2.69664 15.77953 23 0.46538 14.15516 
24 3.37412 16.261-19 24 0.48555 14.13470 
25 4.03031 16.71535 25 0.49548 14.13199 
30 7.25345 18.85758 30 0.50003 14.13472 
35 10.57523 20.86303 35 0.50000 14.13473 
40 14.00914 22.73530 40 0.50000 14.13473 
45 15.53357 24.49459 45 0.50000 14.13473 
50 21.13411 26.15909 50 0.50000 14.13473 

as an initial approximation s' to s(X + AX). The increment AX was chosen empirically 
to be 0.25. In a final run, the functions A(s, X) and P(s, X) were calculated for the four 

arguments S = Sm(X) iz 10' and s = sm(X) 4 10-5i. Simultaneous sign changes 
in the real and the imaginary parts of the func-tions were found in all cases. 

Table MI gives five-digit values of the zeros of A(s, X) for the first six trajectories 

3m(X). The values for the zeros of P(s, X) for the first five trajectories sm(X) are given in 
Table M2. 

The general behaviour of the other trajectories 3m(N) for m > 6 and Sm(X) for 

m > 5 seems to be unknown. It is probable that s7(X) joins 9,(X) and that 9g,(X) ends 
in the third zero of D(s), that is, at S3 = 2 + 25.01086i. Of course, it would be of 
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TABLE M 1 (cont.) 

35(X) 36(X) 

X ~ ~ ~~~~~t Xt 

5 -16.32207 2.76585 5 -20.27733 2.29409 
6 -16.00875 5.34149 6 -20.03007 5.32337 
7 -15.28018 7.52358 7 -19.27452 7.89489 
8 -14.31946 9.32943 8 -18.23036 10.02442 
9 -13.24691 10.80833 9 -17.04310 11.76753 

10 -12.13694 12.01640 10 -15.80341 13.18927 
11 -11.03325 13.00557 11 -14.56512 14.35053 
12 -9.96006 13.81983 12 -13.35845 15.30326 
13 -8.92959 14.49492 13 -12.19913 16.08984 
14 -7.94686 15.05923 14 -11.09411 16.74406 
15 -7.01266 15.53517 15 -10.04522 17.29263 
16 -6.12530 15.94041 16 -9.05141 17.75653 
17 -5.28173 16.28904 17 -8.11007 18.15231 
18 -4.47809 16.59257 18 -7.21791 18.49308 
19 -3.71009 16.86083 19 -6.37143 18.78927 
20 -2.97327 17.10295 20 -5.56728 19.04931 
21 -2.26341 17.32832 21 -4.80245 19.28000 
22 -1.57738 17.54750 22 -4.07449 19.48688 
23 -0.91446 17.77246 23 -3.38168 19.67441 
24 -0.27737 18.01521 24 -2.72327 19.84601 
25 0.32901 18.28536 25 -2.09984 20.00399 
26 0.90173 18.58923 26 -1.51390 20.14945 
27 1.44362 18.93147 27 -0.97106 20.28241 
28 ? 1.96507 19.31596 28 -0.48192 20.40298 
29 2.48362 19.74262 29 -0.06373 20.51502 
30 3.01833 20.20151 30 0.26240 20.63091 
35 5.98277 22.51928 31 0.47862 20.76608 
40 9.15331 24.66536 32 0.57021 20.91242 
45 12.42733 26.67402 33 0.55305 21.00902 
50 15.78768 28.57536 34 0.51789 21.03077 

35 0.50341 21.02830 
36 0.49979 21.02461 
37 0.49944 21.02279 
38 0.49968 21.02217 
39 0.49988 21.02202 
40 0.49996 21 .02201 
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TABLE M2 

Zero trajectories for the incomplete gamma function P(s, X) 

81(X) s2(X) 

X ff t X a- t 

1 -1.72630 1.23809 1 -3.72647 0.54067 
2 -1.45710 2.29282 2 -3.88891 1.83256 
3 -1.01952 3.13777 3 -3.77348 2.89397 
4 -0.49804 3.86483 4 -3.51978 3.82369 
5 0.07663 4.51288 5 -3.18074 4.66264 
6 0.68922 5.10302 6 -2.78218 5.43355 
7 1.33072 5.64833 7 -2.33889 6.15075 
8 1.99532 6.15758 8 -1.86027 6.82406 
9 2.67894 6.63702 9 -1.35275 7.46057 

10 3.37863 7.09127 10 -0.82094 8.06563 
11 4.09212 7.52390 11 -0.26832 8.64339 
12 4.81764 7.93769 12 0.30244 9.19716 
13 5.55379 8.33488 13 0.88921 9.72965 
14 6.29942 8.71731 14 1.49025 10.24307 
15 7.05355 9.08649 15 2.10414 10.73930 
16 7.81540 9.44370 16 2.72968 11.21991 
17 8.58427 9.79002 17 3.36586 11.68626 
18 9.35957 10.12639 18 4.01180 12.13952 
19 10.14080 10.45361 19 4.66674 12.58071 
20 10.92751 10.77239 20 5.33003 13.01074 
21 11.71931 11.08334 21 6.00107 13.43039 
22 12.51585 11.38702 22 6.67935 13.84036 
23 13.31682 11.68390 23 7.36442 14.24129 
24 12.12194 11.97442 24 8.05585 14.63374 
25 14.93097 12.25897 25 8.75327 15.01822 
30 19.02744 13.60343 30 12.31949 16.83573 
35 23.19492 14.84000 35 15.99563 18.50828 
40 27.41892 15.99107 40 19.75974 20.06558 
45 31.68930 17.07221 45 23.59633 21.52848 
50 35.99862 18.09478 50 27.49400 22.91220 
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TABLE M2 (cont.) 

90(\) 94(X) 

X ci t X ci 1 

2 -5.90041 1.19521 2 -7.71370 0.47288 
3 -6.03282 2.39330 3 -8.04938 1.78032 
4 -5.98035 3.45439 4 -8.16969 2.93895 
5 -5.81495 4.41961 5 -8.15190 3.99890 
6 -5.57166 5.31319 6 -8.03936 4.98352 
7 -5.27047 6.14692 7 -7.85680 5.90778 
8 -4.92399 6.93397 8 -7.61978 6.78206 
9 -4.54079 7.68074 9 -7.33885 7.61394 

10 -4.12697 8.39283 10 -7.02150 8.40915 
11 -3.68706 9.07462 11 -6.67328 9.17221 
12 -3.22455 9.72963 12 -6.29844 9.90672 
13 -2.74218 10.36072 13 -5.90030 10.61566 
14 -2.24214 10.97027 14 -5.48153 11.30149 
15 -1.72625 11.56030 15 -5.04430 11.96630 
16 -1.19602 12.13251 16 -4.59042 12.61187 
17 -0.65271 12.68839 17 -4.12141 13.23974 
18 -0.09741 13.22922 18 -3.63854 13.85125 
19 0.46894 13.75612 19 -3.14293 14.44758 
20 1.04552 14.27010 20 -2.63553 15.02977 
21 1.63163 14.77202 21 -2.11719 15.59876 
22 2.22662 15.26267 22 -1.58864 16.15537 
23 2.82993 15.74276 23 -1.05054 16.70036 
24 3.44107 16.21293 24 -0.50348 17.23439 
25 4.05957 16.67374 25 0.05203 17.75808 
30 7.24939 18.85435 26 0.61550 18.27199 
35 10.57482 20.86339 27 1.18651 18.77664 
40 14.00916 22.73534 28 1.76467 19.27248 
45 17.53358 24.49459 29 2.34962 19.75995 
50 21.13411 26.15909 30 2.94103 20.23945 

35 5.98537 22.52930 
40 9.15462 24.66516 
45 12.42733 26.67388 
50 15.78767 28.57535 
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TABLE M2 (cont.) 

3 -9.91210 1.10407 
4 -10.18817 2.34009 
5 -10.30294 3.47597 
6 -10.30721 4.53477 
7 -10.23006 5.53153 
8 -10.08983 6.47674 
9 -9.89889 7.37806 

10 -9.66605 8.24133 
11 -9.39781 9.07115 
12 -9.09914 9.87121 
13 -8.77394 10.64453 
14 -8.42531 11.39365 
15 -8.05577 12.12068 
16 -7.66743 12.82746 
17 -7.26204 13.51558 
18 -6.84108 14.18640 
19 -6.40583 14.84115 
20 -5.95739 15.48090 
21 -5.49672 16.10661 
22 -5.02466 16.71913 
23 -4.54196 17.31925 
24 -4.04928 17.90766 
25 -3.54722 18.48499 
26 -3.03631 19.05184 
27 -2.51703 19.60873 
28 -1.98983 20.15614 
29 -1.45510 20.69454 
30 -0.91320 21.22434 
35 1.89287 23.75684 
40 4.83715 26.12205 
45 7.89594 28.34849 
50 11.05178 30.45745 
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interest to be able to answer the-probably difficult-question: which of the trajec- 
tories Sm(X) end in a zero of i(s) and wlhich do not? 
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Note added in proof. After having finished the paper, the author found that 
Franklin [10] has calculated the zeros 9,(l) and 92(l) of P(s, 1) to seven decimals. 
The first five decimals agree with those given in Table M2. Also, Gronwall [11] has 
proved that s1(l), 82(1) and their complex conjugates are the only complex zeros 
of P(s, 1). 
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